\

MicroProcessor Engineering Ltd

21 Hanley Road Shirley
Southampton SO1 5AP
Tel: 0703 780084

J

9900 FORTH

Laboratory Microsy_stems

and

MicroProcessor Engineoring Ltd

Hicropfocessor Engineering Limited
21, Hanley Road, Shirley, Southampton, S01 SAP

A

MicroProcessor Engineering 9900 FORTH

Rev 1.0

(C) MicroProcessor Engineering Ltd. - October 83

MicroProcessor Engineering 9900 FORTH Rev 1.0 Octaober 83
by MicroProcessor Engineering Ltd, England, 0703-773482

Hicroprocessor Engineering Limited
21, Hanley Road, Shirley, Southampton, S01 S5AP
0703-775482
MicroProcessor Engineering 9900 FORTH Rev 1.0 October 83
Introduction
2900 FORTH 1is a conversion of the Laboratory Microsystems
Z-80 FORTH version 2.00. Without the help and assistance of
Ray Duncan at Laboratory Microsystems this project would
never have been started, 1let alone completed. It is our
intention to keep this version upgraded as other Laboratory
Microsystems FORTHs are enhanced.
9900 FORTH history

This FORTH actually arose out of a desire for a language that
could easily be put into EPROM on our industrial boards. As
we had had some experience with the Nautilis Systems range of
FORTH cross—compilers, it became an obvious idea to write one
for the 9900 on our Z-80 system. This we actually did more
easily than we had expected. As we could not quite be
bothered with blowing EPROMs all the time during testing, and
the Marinchip 9900 system has a utility to read CP/M files we
ended up by testing the code in RAM on the Marinchip. After
that it would be so convenient to have a Laboratory
Microsystems compatible FORTH on the 9900, and so here we
are.

As a result we now have not just a disc-based FORTH for 9900
family computers running MDEX or NOS, we also have a 9900
family cross—compiler with both disc-based and ROMmable FORTH
nuclei, and the capability of running any of the Nautilus
cross—compilers issued through Laboratory Microsystems and
many other sources.

Variations from Z-80 FORTH

Compatibility with the Laboratory Microsystems FORTHs is not
100%Z, as the file bhandling operations and system calls of
MDEX and NOS are very different in some areas. In practice
these difficulties are usually negligible. Most of the editor
and utilities were converted without change.

The version of FORTH for the Powertran Cortex is supplied
with two editors. EDIT80 is the original editor for users
with an 80-column terminal on the serial port, and EDIT40
uses a 40-column screen such as is provided when using a
television. In this mode screens are still 1lk-bytes long,

——

. ' -
— ——

MicroProcessor Engineering 9900 FORTH Rev 1.0 October 83
by MicroProcessor Engineering Ltd, England, 0703-773482

but are presented as one screen of 32 lines of 32 characters,
displayed in successive halves. The lines are renumbered to
indicate which half is being displayed.

—_—

[
t

9900 FORTH assembler Rev 1.0 October 83 \Q
by MicroProcessor Engineering Ltd, England, 0703-773482 '

(} ' Microprocessor Engineering Limited
] 21, Hanley Road, Shirley, Southampton, S01 SAP
: 0703-773482

J 9900 FORTH assembler Rev 1.0 October 83

1. Introduction

f} The 9900 FORTH assembler will cope with the full range of
- 99200 instructions. 9995 and 99105 instructions will be added

in a future release. The assembler has been tested by
[J compiling a complete FORTH nucleus. The syntax is modelled on
\ that of the Texas Instruments assemblers, but, as is usual in
FORTH assemblers, operands are presented before the opcaode
mnemonics.

How FORTH assemblers work

N

In this assembler, as in most other FORTH assemblers, the
- mnemonics are FORTH words which are executed at assembly time
to compile data into the dictionary. Any modification of the
opcode for addressing mode must be present before the opcode
word executes, thus the requirement for operands before
opcodes. For the same reason register values must be present
before the register mode flags.

——

Examination of the source code in ASM?9.5CR will show how
this process is built up, and also shows one of the standard
uses of the <BUILDS .. DOES> construct, which is used in
nearly all modern FORTH assemblers.

:‘/““‘

[Although this procedure appears very clumsy at first it has
[many advantages. The assembler is completely free form in

that you can have as many instructions per line as you want,
l so the layout is now completely up to you. Because all the
P} assembler words execute at assembly time you can include any

amount of address arithmetic that is required. Reference to a
predefined FORTH variable will return its address, so
51 allowing that address to be used as an operand within a CODE
definition.

L

Addressing mode syntax

J The order of operands in the 9900 FORTH assembler is source,

- destination, opcode. Register numbers must occur before the

\J register addressing mode operator, and addresses must occur
before their addressing mode operators.

! register addressing
source: n R where n is the register number. RO through R13

| 9900 FORTH assembler Rev 1.0 October 83
by MicroProcessor Engineering Ltd, England, 0703-775482

) are predefined, as are RA through RF.
destinationt n ,R - ,R0O to ,R1S and ,RA to ,,RF are
f? predefined.
I e.g 3 R ,L,R11 MOV is equivalent to MOV R3,R11.

register indirect
‘j' source: n ¥R
destination: n ¥R
e.g 4 ¥R 3O ,*R MOV is equivalent to MOV xR4,xXR3

;} register indirect with auto-increment

source: n ¥R+ ,
— destination:t n ¥R+ e.g. 6 ¥R+ 7 , ¥R+ A 1is equivalent to A
'l ¥R6+, SR7+

symbolic

source: addr 2>

destination: addr ,3>

e.g FRED 9> GEORGE ,@> MOV is equivalent to MOV JFRED, 9GEORGE

)

_l indexed symbolic

source: addr reg 2()

destination: addr reg ,9()

e.g. FRED 2 23() GEORGE 3 ,2¢() MOV is equivalent to MOV
dFRED(2) , 9GEORGE (3)

e

immediate addressing

For TI processors immediate addressing is indicated by the
opcode mnemonic, so no addressing mode indicator is required
; for this mode.'

f} e.g 1 R 200 LI 1is equivalent to LI R1,200

L

TB, SBO, and SBZ require an offset which lies in the range
—128- - 127-
e.g. 15 SBZ is equivalent to SBZ 15

ﬂl CRU instructions

:J jump instuctions
All the jump instructions should be given the target address.
(Calculation of the actual 8-bit offset is performed within
] the word corresponding to the jump instruction. Within a CODE
definition an address may be left on the stack several
- assembler instructions before it is used, as long as it does
J not interfere with the intervening instructions. In general
- jump instuctions are better dealt with by the assembler
structuring words dealt with below. The pseudo-op ¢ has been
fi defined to mean the current value of the dictionary pointer
‘ (location counter).
e.g ¢ 10 + JEQ is equivalent to JEQ@ $+10

4 Assembly level structures‘

Just as it possible to use the FORTH structures BEGIN ...
} UNTIL, IF .. ELSE .. THEN at high level, so we have defined a
.. set of identically named structures at assembly level. These
cope with the problem of forward references. They act on a
set of words which force the construction of a Jjump
i instruction whose opcode depends on the given status register

———

9900 FORTH asseabler Rev 1.0 October 83
by MicroProcessor Engineering Ltd, England, 0703-773482

—

condition.

e.g. 7EQ IF ELSE ENDIF ‘

The IF clause will be executed if the equal status bit is
true. Note that this leads to the construction of a JNE
opcode i.e all the jump opcodes are the logical opposite of
- what 1is indicated by the condition shown before the IF. As
the 9900 family does not have a complete set of arithmetic
Jump instructions AT and 7?6T do not exist, but their
complements do.

L

- n
e

.

Condition flags

S

71 ?7EQ if equal
JJ ?NE if not equal
. ?H if logically greater than (higher)
‘ ?HE if logically greater or equal
f_l 2L if logically less
. ?LE if logically less or equal
: ?NC if no carry
o 2C if carry
(] 20 if overflow set
a 2EP if even parity
— ?AGE if arithmetically greater or equal
| ?ALE if arithmetically less or equal
) uc on no condition
f Structures

?%xx IF ... ELSE ... ENDIF
] The IF clause is executed if the condition is true, otherwise
the ELSE clause is executed.

— BEGIN ... ?xx UNTIL
(] The loop is executed until the given condition is true. Note
- that BEGIN ... UC UNTIL gives a loop that never exits.

f] BEGIN ... AGAIN
An indefinite loop

#] The loop is repeated while the stated condition is true.

= Pseudo—ops
\}

RT compiles OB ¥R B == B %xR11 == RT
B + compiles HERE, the location counter value
(J NOOP compiles ¢ 2 + JMP == JMP $+2, a no-op

6. Using assembly language words

{J FORTH words should be defined as assembler words by using
- CODE and END-CODE instead of : and 3. Unlike semi—colon (j
-)y END—-CODE does not compile a branch back to the FORTH
iJ interpreter. In MicroProcessor Engineering versions of FORTH,
- this branch is an indirect one through a register which

contains the address of NEXT. Which register is used is given
(J elsewhere in the manual.

N
N

— 1

ST
—]

9900 FORTH assembler Rev 1.0 October 83
by MicroProcessor Engineering Ltd, England, 0703-773482

7,? Cross—compiler version of the assembler.

Users of the version of this assembler for the Nautilus
cross—compiler should be aware of some differences. The jump
instructions support forward referencing, and the structuring
words are not present. The structuring words will be added
on a later release.

If you are using the cross—compiler on a host processor other
than a 9900 be sure to use the phrase ASSEMBLER EVEN rather
than just ASSEMBLER when starting a section of code without a
dictionary header. This will force the dictionary pointer
onto an even address before assembling any code - remember
the error checking may be sparser than you like it.

| :

II
III

| ' v

- VI

E] VII

VIII

ﬂ IX
q X1

— XII
]

Section

qqQ0c FORTH User's Manual

Contents

User's guide

Contents ot distribution disk
Using the interpreter/compiler
Writing programs in FORTH

Screen Files

Access to MDE&X operating system
Leaving FORTH

Utility programs

Guaranteed interpreter locations
Use of registers in Q100 FORTH
Console input and output

Screen auto-load at cold start
Creating custom FORTH applications

L]
[SECSEUSEUS IS RS BUS TS IS

HHEHEFEWOONOWUVE WM
WS)
[]

AW

q9oc FORTH quick reference

Contents of distribution screen file
Line editor

Screen editor

VDEX disk interface

Qqo0 assembler

QOO FORTH model description

FORTH tutorial

Control structures

Floating point vocabularf and examples

M o0 FORTH glossary

2.0 Distribution Diskette

9900 FORTH 1is distributed on 2 standard eight-inch, soft-sectored,
single-density diskettes which contain the following files :

forth ‘ Executable FORTH interpreter
forth.scr FORTH screen storage

forthle. FORTH with precompiled line editor
editor.scr Source text tor screen editor
asm9® .scr Source text for AQoOoOassembler
latest.doc User notes *

In addition, if the floating point option was purchased, your disks
will contain some or all of the following files:

hfpbase. hardware assisted nucleus

hfpforth hardware assisted interpreter
sfpbase software floating point nucleus
sfpforth software floating point interpreter
float.scr source for floating point routines

* If present, this file contains additions or modifications that
occurred too late to be included in printed documentation.

2.1 Installation

FORTH User's Guide 1I-2
(c) 1982 Laboratory Microsystems

i

A

{

3.0 Getting started with FORTH
After booting up the‘WDEXoperating system execute FoRTH
. FORTH
The interpreter will 1load into memory, then print the identifying

message (may vary from this example depending on type of system and
amount of memory): :

QQo0 FORTH version 2

(c) 1982 Laboratory Microsystems
Executing under MDEX 3.x

Using file: a:forth.scr

Dictionary space available: 6532 bytes

OK
FORTH is now ready for use. 1In order to view the contents of the
screen file, you can use the INDEX function to display the first line
of each screen as follows:

1l 50 INDEX <return>

You can also view an abbreviated screen index, formatted four across,
by entering: '

QX <return>
To view a given screen of text, type the number of that screen
followed by the word "“LIST". For example, to read the memory MAP
program which is stored in screen #1l, you would type:

1 LIST <return>
To compile a given screen of text, type the number of that screen
followed by the word "LOAD". For example, to compile the MAP program
which is stored in screen #1l, enter: ,

1 LOAD <return>
Now to invoke the function itself, type:

MAP <{return>
It is often convenient to enter a number of commands on the same line,
which are processed from 1left to right by the interpreter. For

example:

1l LIST 1 LOAD MAP <return>

FORTH User's Guide 1I-3
(c) 1982 Laboratory Microsystems

‘Fg 3.1 Customizing the FORTH interpreter

; The distribution FORTH file uses 12 kbytes of memory. Since
W MOEX occupies about V) kbytes, you will need at least 32 kbytes of
J RAM in your system. FORTH does not automatically adjust its stacks and
buffers to take advantage of additional memory when it is available.
Youc an expand the FORTH runtime area up to a maximum of 4% kbytes
(leaving J) kbytes for MDEX in a 60 kbyte system) or change the number
of screen buffers by using the utility in screen #$2.

[} Wait for the system identification message and "ok" prompt. Then
Q~§ enter:

. 2 LOAD REALLOCATE

- You will be asked to enter the total size in kbytes of the memory

_ available for use by FORTH, then the number of screens to be buffered.

i Remember that each screen buffer subtracts 1 kbyte from the amount of

. dictionary space. Entries should be in the form of a decimal number
followed by a <carriage return. The program will calculate the new

- addresses of the buffers and stacks, set all necessary system

i pointers, then a cold start will be executed and you will again see

o the system identification message. At this point you can rewrite the

) executable image and make the changes permanent simply by entering:

\

!] SAVE FORTH <return>

3.2 Floating point systems

Users who purchased the hardware or software fldéating point extensions
will receive an extra diskette containing the files xxxBASE

‘ XXXFORTH, and FLOAT.SCR (where xxx=HFP for hardware assist and
f} xxx=SFP for the full software version). xxxBASE is the assembled
“ nucleus, containing the appropriate software or hardware floating

point primitives. FLOAT.SCR contains the high level FORTH source code
[and conversion tables. xxXFORTH is the executable
J interpreter/compiler, it is created by loading the appropriate screens
from FLOAT.SCR on top of xxxBASE.

(1 XXXFORTH 1is complete in itself and is the only file you need to
. transfer to your working disks. The xxxBASE and .SCR file are

provided for users who wish to make basic changes in the way the
: (] floating point software functions.

If you purchased the hardware assisted floating point software alone,

FORTH User's Guide 1-4
(c) 1982 Laboratory Microsystems

you will need to modify the system variables AP-DATA and AP-CONTROL to
match the port addresses of your AMD 9511 board. If you bought the
software and S-100 board as a package from Laboratory Microsystems
the port addresses are set up properly when shipped.

as well as modifications to E, NUMBER, and DLITERAL for floating point
number conversion and compilation. 1In all other respects the floating
point runtime package is software compatible with the basic FORTH.COM

;1 The floating point nucleus contains the necessary machine primitives
fl load module.

4.0 Writing Programs in FORTH

interpreter, compiler, and virtual memory management system. Any
command or sequence of commands may be executed directly from the
keyboard or from disk storage. Programs in FORTH are "compiled" from
i combinations of existing commands (represented by vocabulary "words"),
! new commands as defined by the user, and control structures such as
IF...ELSE...THEN or DO...LOOP. Usually new routines are developed
- interactively and incrementally at the console; the final version is
saved on the disk where it may be invoked from the keyboard or by
= another program.

= The FORTH runtime package is actually a remarkably compact
L

The beauty of FORTH lies in its extensibility and flexibility. New
- vocabulary words, functions, and even data types can be added to the
language at will in either "high-level" or machine code. Programs are
o built up in the same manner as people organize their thinking; by
i successively creating new functions in terms of previously defined
functions, forming hierarchies of increasing levels of abstraction.
- Language components which are unnecessary for a particular application
j can be deleted from the runtime package by the sophisticated user to
- minimize memory requirements.

A If your experience 1in programming has been restricted to such
[sequentially organized 1languages as BASIC or FORTRAN, you will
initially find both reading and writing programs in FORTH rather
— obscure. On one hand, FORTH can be practically self-documenting: the
\ ’ language lends itself well to bottom-up design; names of functions may

b be freely chosen to describe what they do; and embedded comments may
be lengthy since they do not effect the size of compiled code. On the
fﬂ other hand, the most efficient and elegant FORTH programs maintain

Iy most working variables on the stack, which makes reading (and
debugging) the code a real mental exercise.

FJ You may find it profitable to study the demonstration programs
- supplied with Q9oo FORTH as a guide to style. Read the glossary
documentation ana spend a few hours trying out each function and

] observing 1its effect on the stack. A number of useful manuals may be
- purchased from FORTH 1Interest Group (P. O. Box 1105, San Carlos,
California, 94070) or from Mountain View Press (P. O. Box 4656,

FORTH User's Guide 1I-5
(c) 1982 Laboratory Microsystems

T TS
[

[
;
|

o
J

_.\ ;
d
o

Mountain View, California, 94040), The August 1980 issue of BYTE and
the September 1981 and September 1982 issues of Dr. Dobb's Journal
were completely devoted to FORTH tutorials and programs. Additional
helpful articles may be found in the February 1982 issue of Dr. Dobb's
Journal and the March 1982 issue of IEEE COMPUTER.

5.0 FORTH virtual memory

The FORTH interpreter uses a standard MDEX disk file to store screens
of text. The disk file and RAM buffer are treated together as a large
virtual memory. Physical sectors are read in from the disk as needed
into buffers that are allocated on a least-recently-used basis. The
user program can mark a sector as changed with the UPDATE function,
this forces the block to be rewritten to the disk before releasing the
buffer. Disc I/0 1is performed via the standard MDEX random access
functions, each successive eight blocks of the data file corresponds
to one FORTH screen. If the interpreter requests a screen which has
not been previously allocated, the driver initializes it to spaces and
flags it for a forced disk write before passing it to the prbgram.

The number of screens which can be stored in the disk file is wusually
limited by the size of the media. On an eight-inch single-density
diskette, there is room for slightly more than 200 screens. On larger
media such as "Winchester" disk drives, each screen file may contain
up to a maximum of 4095 screens.

The screen data file supplied on the distribution diskette is named
FORTH.SCR. This is the file that is opened by default if the FORTH
interpreter is invoked by the simple command

FORTH <return>

The user has the option of specifying other files for screen storage.
This is done by giving the name of the desired file 1in the original
command 1line. The screen storage file does NOT have to reside on the
same drive as the interpreter. Format:

‘FORTH unit/filename.ext {return>

If the data file cannot be 1located, the interpreter will ask you
whether you wish for a new file to be created, and will either
establish the file and proceed or exit to MOEXdepending on your
response. It 1is suggested that you use the extension ".SCR" for all

FORTH screen storage files, in order to locate them easily on a
directory listing.

Example, to load the FORTH interpreter and use the file "MYFILE.SCR"
on drive 2 for screen data storage, you would type:

FORTH 3/MYFILE.SCR <return>

FORTH User's Guide 1I-6
(c) 1982 Laboratory Microsystems

5.1 Changing Screen Files

The word USING allows you to change to a different screen file from
the one specified in the original command line without leaving the
FORTH interpreter/compiler. This word may only be used as an entry
from the keyboard; it may not be compiled or executed while LOADing.
If the drive assignment is not gqiven, the "current" disk drive will be
used. The extension is mor lorced. USING's action is as
follows: all wupdated buffers are written to the disk and the current
screen file is closed. If the specified screen file cannot be located
a warning message 1is displayed and the previous screen file is

reopened, otherwise a success message 1is displayed and all disk
buffers are cleared.

Example (the user's entry is underlined):

USING EDITOR Current screen file: 1/€ditor

OK

5.2 Disk Transfer Errors

FORTH User's Guide 1I-7
(c) 1982 Laboratory Microsystems

9.0 Interpreter locations of interest to users

The FORTH interpreter locations listed below are "guaranteed". Their
[significance will remain unchanged as new versions of 9Qco FORTH are
j released, although their contents may vary.

, location significance
1] glo0 jump to cold start
L @104 jump to warm start
. 9108-010A version number
R glec Address of topmost word in FORTH
LJ vocabulary
gl10E Character to be used as backspace
. command (supplied as @8H)
‘ } @110 Initial user area pointer
- 0112 Initial data stack pointer
9114 Initial return stack pointer
[gl1la Initial value of WARNING
L gl1c Initial value of FENCE
0l1E Initial dictionary pointer
0120 Initial VOC-LINK
gl2a CFA of user's abort routine
- glac CFA of user's quit routine

FORTH User's Guide 1I-11
(c) 1982 Laboratory Microsystems

16.0 Use of CPU registers in FORTH

FI FORTH —Q@i preservation rules

. IP Q preserved across FORTH words

- RP \o preserved across FORTH words

‘} W i Sometimes output from NEXT. May be
[altered before JMP'ing to NEXT.
[SP 3 Should be used only as a data stack
13 across FORTH words. May be wused
' within FORTH words if restored
— before transferring to NEXT.

} 7 Pa‘v-«"(tr er o~ax

o, \ . 2 . \ '\‘\A(Jez\o.rx v.\mrdq A).,\J:Ln\ls co._.\c“\o-t:o\

11.0 Comments on Console Input and Output

Ty S|
S e G

S| Ty

1l1.1 Special Control Characters

The code control/H (@8H) is treated as a cursor backspace command, and
causes the sequence <BS SP BS> to be sent back to the terminal.

r T

g is The backspace command is specified by the contents of word @10EH, and
may be changed by the user to a more convenient key. For example, to
change the backspace command character to 7FH, you would enter:

-

'} DECIMAL 127 14 +ORIGIN ! (resets the bootup literal)
SAVE FORTH <return> (to create a new FORTH file)

} The character control/C (°C) causes FORTH to immediately terminate
execution and return control to MDEX via a "warm boot". 1In general,
; we advise that you avoid using this control code as a means of exit
iJ from FORTH, as the usual sequence of closing the disk screen file is
bypassed and unpredictable amounts of data may be lost.

[All other control codes (including "X, “U, and °S) have no special
significance under Q9COFORTH at present.

FORTH User's Guide 1I-12
(c) 1982 Laboratory Microsystems

11.2 Selection of Output Device .
The vocabulary words CONSOLE and PRINTER have been added to allow the
user to select the primary output device during program execution.
They affect any characters transmitted directly or indirectly using
the function EMIT. For example, the following command 1line would

print a triad starting with screen #3 on the line printer, then return
control to the system console:

PRINTER 3 TRIAD CONSOLE <return>

11.3 Configuration of @00 FORTH for your terminal

Cursor control functions for the demonstration programs are loaded
from screen #46. When you purchase the FORTH system, these functions
are set up for a Televideo 950 CRT, and must be modified for your
terminal type. Program screens are supplied in the distribution file
FORTH.SCR for a number of common CRT models. If your terminal appears
in the list below, you can quickly customize the system as follows:

A>FORTHLE (wait for system id and "OK", then type)
EDITOR nn 46 COPY FLUSH BYE <return>

Where "nn" is the appropriate screen number from the list below:

60 Beehive B-100

61 Televideo family

62 Lear ADM 3

63 Soroq IQ 120

64 Intertube

65 Hazeltine 15xx

66 IBM 3101

67 Synertek KTM 3/80

68 DEC VT-52

69 Micro-Term ACT-IVB

70 ADDS Regent series

71 Xerox Personal Computer
72 Zenith 2-19 or Heath H-19
73 HP 2621A

74 ADDS Viewpoint

If your terminal does not appear in the table above, you may use the
line editor to make the required changes, since it is not terminal
dependent. Carefully read the line editor documentation, then enter
the FORTH interpreter and follow the sequence below.

A>FORTHLE (wait for system id and "OK")

FORTH User's Guide I-13
(c) 1982 Laboratory Microsystems

EDITOR <return>

select editor vocabulary)
46 LIST <return>

display screen #46 and)
prepare to edit it)

move the cursor to start)
of first line of screen)

TOP <return>

N NS S~

(now use the P function of)
(the editor to change the)
(contents of desired lines)

... for example, to change line 4 so that the CLEARSCREEN
function transmits an ASCII formfeed code, you enter:

4 P : CLEARSCREEN 12 EMIT ; <return)>
... when all necessary lines have been changed, type:

FLUSH BYE

The updated sectors are written to the disk and the interpreter exits.
If things go awry during editing and you want to start over, you can
use the COPY function to restore screen #46 from screen #61.

Similar changes will have to be made ¢to screen #8 in the file
EDITOR.SCR for the full screen editor to work correctly. The cursor
control functions supplied in FORTH.SCR can be used as a model. See
the separate documentation section for the screen editor. :

12.8 Screen Auto-load

Z-80 FORTH has the capability of automatically loading a user defined
screen at cold start time. This facility may be used to immediately
compile and start up an application program, thereby protecting.the
FORTH interpreter/compiler from access by the computer operator. The
variable BOOT-SCREEN must be initialized to the desired screen number
and a new FORTH file created using the SAVE command. If the value
of BOOT-SCREEN is zero (as it is on the distribution disk), FORTH will
skip past the screen 1load, print the system 1ID, and prepare to
interpret from the keyboard in the usual manner.

After editing your startup commands into the screen file, you can test
them by setting the value of BOOT-SCREEN to the screen number then
executing COLD from the keyboard. When satisfied with the result,

enter: SAVE filename <return> to create a new file with
BOOT-SCREEN 1initialized to the startup screen number. For example, to
create a FORTH that will load the contents of screen $#16 at cold

start time:

A>FORTH ‘(wait for system ID and "OK", then enter)

DECIMAL 16 BOOT-SCREEN ! <return>

FORTH User's Guide 1I-14¢
(c) 1982 Laboratory Microsystems

SAVE FORTH <return>

13.0 Creating FORTH application programs

Two gquaranteed locations are provided in the boot-up literals to help
you create custom precompiled FORTH application programs. By storing
the CFA of your main routine into the variable "UQUIT" at location
@l12Ch, FORTH is forced directly into your application program at
startup and will not interpret from the keyboard. You can also place
the CFA of a custom error handling routine into the location "“UABORT"

at @1l2ah. For example, if the source text for your program can be
compiled by LOADing screen #40, and the main control routine is named
'MY-PROGRAM', the following sequence would create a new file that
executes your application automatically.

DECIMAL

40 LOAD

(compile user's program)
' MY-PROGRAM CFA 44 +ORIGIN ! (store CFA into UQUIT)

SAVE FORTH (create a new file)

For another example, see screen #1 of the file EDITOR.SCR which uses
this capability to create EDITOR

Please note that the 91> FORTH file is proprietary software and
is sold for use by a single purchaser. However, we wish to strongly
encourage the further development of programming tools written in
FORTH. If you wish to create and resell custom applications that
contain Qoo FORTH as part of the run-time module, please contact us!

FORTH User's Guide 1I-15
(c) 1982 Laboratory Microsystems

e A e e

FORTH Quick Reference

n,nl ... 16 bit signed number
d,d1 ... 32 bit signed number

u 16 bit unsigned number
addr memory address

b 8 bit byte

c ASCII character

£ boolean flag

STACK MANIPULATION

-DUP n->n?
2DROP d ->
2DUP d ->dd
2SWAP dl 42 ->
>R n ->
DEPTH ->n
DROP n ->

DUP n ->nn
OVER nl n2 ->
PICK nl -> n2
R ->n

R> ->n
ROLL nl -> n2
ROT nl n2 n3
SWAP nl n2 ->
NUMBER BASES

BINARY =
DECIMAL ->

HEX ->

BASE -> addr

ARITHMETIC AND LOGICAL

* nl n2

*/ nl n2 n3
* /MOD nl n2 n3
+ nl n2 ->
+- nl n2 -=>
- nl n2 ->

->

d2 41

nl

n2 nl

->
n2

n2 n3 nl
nl

product

-> n4

-> n4 nb5
sum

n3
difference

Stack inputs and
shown, top of s right.
Not all vocabulary items are
given in this summary. See the
manual's Glossary section for
complete explanations.

outputs are

duplicate n if not zero
discard double number
duplicate double number
reverse top two double numbers
move to "return stack"

leave # of items on stack
discard single number
duplicate single number

copy 2nd item to top

copy nl-th item to top

copy from "return stack"

move from "return stack"
rotate nl-th item to top
rotate 3rd item to top .
reverse top two single numbers

set binary system base

set decimal base

set hexadecimal base
system variable containing
current number base

multiply

n4d = nl * n2 / n3

n4 remainder, n5 quotient
addition

apply sign of n2 to nl
subtraction

FORTH Quick Reference 1II-1
(c) 1982 Laboratory Microsystems

/ nl n2 -> quotient division

/MOD nl n2 -> n3 n4 n3 remainder, n4 quotient
" 1+ nl -> n2 increment by one
< s 1- nl -> n2 decrement by one
‘ 2% nl -> n2 signed multiply by two
— 2+ nl -> n2 increment by two
; ‘ 2- nl -> n2 decrement by two
[2/ nl -> n2 signed divide by two
' ABS n -> absolute absolute value of single
[AND ul u2 -> and bitwise logical and
§l "D+ dl d2 -> sum double precision add
D+- dl n -> 42 apply sign of n to dl
= D- dl d2 -> difference double precision subtract
§1 DABS d -> absolute absolute value of double’
) DMINUS d -> -d change sign
) M* nl n2 -> d double precision product
{ M/ d nl -> n2 n3 mixed magnitude divide
(Jﬁ M/MOD udl u2 -> u3 u4 unsigned mixed divide
= MAX nl n2 -> max leave larger number
A MIN nl n2 -> min leave smaller number
l ‘ MINUS n -> -n change sign
b MOD nl n2 -> mod leave remainder of nl/n2
i OR ul u2 -> or bitwise logical or
(1 S->D n->d sign extend to double
— TOGGLE addr b -> complement addr by b
U* ul u2 -> ud unsigned multiply
i u/ udl ul -> urem uquot unsigned divide
(#} XOR ul u2 -> xor bitwise exclusive or
(\ COMPARISON
(J g< , n -> f true if n < zero
L g= n -> ¢ true if n = zero
2> n => f true if n > zero
5 < nl n2 -> £ true if nl < n2
]1» = nl n2 -> £ true if nl = n2
o > nl n2 -> £ true if nl > n2
. D< dl d2 -> £ true if dl < d2
',] = dl d2 -> f true if dl = 42
: D> dl d2 -> f true if dl > 42
U< ul u2 -> £ true if ul < u2
3
(J MEMORY
L ! n addr -> ' store single at addr
+! n addr -> add n to word at address.
[+ORIGIN n -> addr offset from origin
Q} R n -> store word into dictionary
2! d addr -> store double at addr
1 FORTH Quick Reference II-2
(c) 1982 Laboratory Microsystems

2@

ALLOT
c!
c,
ce

DISK ACCESS

BLOCK
BOOT-SCREEN
DISK-ERROR
EMPTY-BUFFERS
FLUSH

LOAD

R/W

SCR
SCREEN-FCB
THRU

UPDATE

addr -> d
addr -> n
n ->
b addr ->
b ->
addr -> b

->

-> addr

n .-> addr
-> addr
-> addr
->

->

n ->

addr block f ->
-> addr
-> addr
nl n2 ->
->

MDeEX SYSTEM INTERFACE

?TERMINAL
BYE
CONSOLE
CR

DIR

EMIT

I3IN

KEY
PRINTER
SAVE

-> £
->
->
->
->
c =->

Paﬁo:‘tkr M QMlus -, 'ikits

->c
->
->

OUTPUT FORMATTING

#
#>
#S

->d

-> addr u
-> 0@

->

j oMo o7

->

addr ->

line scr =>

n fieldwidth ->

fetch double number

fetch single number
reserve dictionary space
store byte at addr

store byte into dictionary
fetch byte

continue with next screen
variable, current block
read disk block n to addr
variable, cold boot block
variable, disk status
clear disk buffers

force write updated buffers
compile/execute screen n
flag: @=read, l=write
variable, current screen
screen file control block
LOAD screens nl through n2
mark last BLOCK for write

true if key depressed
return to

select video for output
send CR-LF sequence

show disk directory

send one character

VDEX service request

read one ASCII char
select printer for output
write memory image

convert next digit

make string ready for TYPE
convert rest of digits
print signed number

print string up to "

print CPU identity

print filename from fcb
print line of text

print right-justified

FORTH Quick Reference 1II1-3
(c) 1982 Laboratory Microsystems

.STACK -> display parameter stack

<# -> start output string
i ? addr -> print contents of addr
1 5 BL ’ -> blank leave ASCII blank
C/L ->n leave characters per line
. D. d => print double number
; D.R d fieldwidth -> print double right justified
L. HOLD c => insert char in output string
ID. addr -> print definition's name
IN -> addr variable, input stream pointer
MESSAGE n -> print line n of screen 4+
ouT -> addr variable, output char. count
— SIGN nd->d insert sign into output string
5 SPACE => print a space
ﬁ SPACES n -> print n spaces
TYPE addr u -> type string of u characters
{:ﬁ% U. u -> print unsigned number
(B '
-
}J CONVERSION AND STRING HANDLING
-TRAILING addr nl -> addr n2 suppress trailing blanks
(} BLANKS addr n -> store n blanks at addr
. CMOVE addrl addr2 len -> move byte string
COUNT addrl -> addr2 n followed by TYPE
DIGIT c nl -> f£ff OR n2 tf convert c by base nl
| ENCLOSE adr c -> adr nl n2 n3 text scanning primitive
- ERASE addr n -> clear n bytes to zeros
. EXPECT addr count -> read string from terminal
i_} FILL addr n b -> store n bytes of b at addr
L MATCH nl n2 n3 n4 -> £ nS string matching for editors
NUMBER addr -> d convert to double number
[QUERY -> input string to TIB
JJ S= addrl addr2 len -> f true if strings identical
;?E WORD c --- read input to delimiter c
{ DISPLAY
t] INDEX nl n2 -> title lines for scr nl to n2
LIST n -> display screen n
i QX => guick screen index
' SHOW nl n2 -> scr nl thru n2 on printer
= TRIAD n -> display 3 screens from n
- VLIST -> , display CONTEXT vocabulary

FORTH Quick Reference 1II-4
(c) 1982 Laboratory Microsystems

Contents of file FORTH.SCR on FORTH distribution disk

Screen(s)

Contents
System identification and credits.

Memory allocation map display. To compile type: 1
LOAD <return>. Then to view memory addresses of
system buffers and stacks type: MAP <return>.

FORTH system memory allocation program. Allows you to
modify the dictionary size and number of disk buffers.
To compile enter: 2 LOAD <return>. To run the program

-enter: REALLOCATE <return>. After you see the system

ID again, enter: SAVE FORTH <return> to write out the
executable image to the disk and make the changes

. permanent.

Reserved for Interpreter/Compiler error messages.

Reserved for Assembler error messages.
Reserved for Data Base Management error messages.

Integer l-dimensional and 2-dimensional array
definitions. During compilation, "n ARRAY xxx"
creates an array of n words named xxx, and initializes
it to zeros. During execution, "n xxx" leaves the
indexed address into the array on the top of the
stack. During compilation, "x y 2ARRAY xxx" creates
an array with dimensions x by y named xxx and
initializes it to zeros. During execution, "x y xxx"
returns an indexed address into the array for
coordinates (x,y). For example, "4 10 xxx @" would
fetch the contents of coordinate (4,19) in array xxx.
See also multi-dimensional array definition in screens
57-59.

Random Number Generator, by J. E. Rickenbacker. 1In
order to compile the random function type: 9 LOAD
<return>. Then any number followed by the word RANDOM
will return a random value between zero and that
number. For example, 50 RANDOM will return a value
between @ . and 49. A short program to test this

Distribution File FORTH.SCR III-1
(c) 1982 Laboratory Microsystems

]

B
Rl

T
—

L

tkff@

T
i J

fig-FORTH Portable Line Editor

The Editor supplied with QQoo FORTH has been adapted from the portable
Editor written by W. Ragsdale and placed in the public domain through
FORTH Interest Group.

In screen-oriented commands such as COPY or LIST, 'n' refers to a
screen number. In line oriented commands such as T or D, 'n' is a line
number @-15. 'Text' indicates a string of arbitrary length, with or
without embedded blanks, terminated by a carriage return. 'PAD' refers
to a buffer which holds a single line of text, it serves as a work
area from which data may be copied to or from desired locations in the
current editing screen. Each command must end with a carriage return,
when it is successfully executed the system replies 'OK'.

Note that after 1loading the Editor, the current screen and current
cursor position are undefined until a LIST and then a TOP command are
executed.

Command Explanation

19 LOAD Load and compile Editor commands from Forth screen
file.

EDITOR Select Editor vocabulary and make commands available
for use.

FORTH Leave Editor vocabulary and return to normal Forth
vocabulary.

n LIST Display screen 'n' and select it for future editing.

L Display currently selected program screen and location

of cursor.

TOP Home cursor to upper left corner of screen.
n CLEAR Clear screen 'n' to blanks.
nl n2 COPY Copy the <contents of screen 'nl' to screen 'n2'. The

contents of screen 'nl' are unchanged, the previous
contents of screen 'n2' are lost.

n T Display the contents of line 'n' of the current screen,
also 1leave a copy of the line in PAD. The cursor is
left at the start of the selected line.

n H Copy the contents of line 'n' to PAD, 1leave the 1line
unchanged.

FORTH Line Editor IV-1
(c) 1982 Laboratory Microsystems

n P text

F text

X text

C text

TILL text

FLUSH

Erase the contents of line 'n'.

Delete the contents of line 'n', all higher numbered
lines are 'rolled up' one line. The contents of line
15 are duplicated. 1In addition, the text of the line
that was deleted is saved in PAD.

Spread the text of the current screen, making line 'n'
blank, and rolling down the remainder of the screen by
one line. The previous contents of line 15 are lost.

Replace the contents of line 'n' with the text in PAD.

Replace the contents of line 'n' with the following
text.

Insert the text at PAD onto 1line 'n', all higher
numbered 1lines are rolled down by one 1line, the
previous contents of line 15 are lost.

Move the cursor across the number of characters given
by the signed amount 'n'. A negative number moves the
cursor left, a positive number moves it to the right.

Back up the cursor by the text in PAD.

Find the next occurrence of the given text, types the
line on which the text was found. Sets the cursor at
the end of the matching text, and leaves a copy of the
matched text in PAD. The search begins at the current
cursor position and continues until a match is found or
the end of the screen is encountered. If there is no
match, an error message is issued and the cursor |is
left at the start of the screen.

Find the next match of the current contents of PAD.
Otherwise works like the F command. Can be wused 1in

conjunction with the F command to successively search
for the same word or phrase.

Find and delete the following text, search 1is 1limited
to the current line. Leaves the cursor at the point of
deletion. The right end of the line is blank filled.

Spread the <current line at the cursor and copy in the
following text. Characters that spill off the right
end of the 1line are lost. The cursor is left at the
end of the inserted text.

Deletes contents of the current 1line up to and
including the specified text.

Write all updated blocks to disk.

FORTH Line Editor 1IV-2
(c) 1982 Laboratory Microsystems

Mini Screen Editor

The Mini Screen Editor supplied with Z-80 FORTH is derived from a
simple example published in Forth Dimensions, Vol. 1II, No. 3, page
83. A full screen editor is supplied in the file EDITOR.SCR and is
described in a separate documentation section.

The source text for the mini screen editor is supplied in screens #20
to #22. Also loaded during compilation are cursor control functions
from screen #46 and the case control statement in screen #52. As
supplied on the distribution disk, the cursor functions are configured
for a Televideo 950 CRT. 1In order to use the editor, you will need to
modify the routines CLEARSCREEN (clear screen and home cursor), GOTOXY

(move cursor to address x,y), and CLREOS (clear screen from current
cursor position to end).

The editor's cursor movement keyboard commands are defined by
constants in screen #20, and may be readily modified to make them more
convenient on your terminal.

Command Explanation

20 LOAD Load and compile mini screen editor from Forth storage
file.

n EDIT Read screen 'n' and make it available for editing.

When your cursor control functions are properly set
up, you will observe the following sequence of events:
- screen is cleared and cursor jumps to home position.
- title 'Screen # n ' is printed in upper left corner.
- current contents of screen are displayed, with 1line
numbers 0@-15 at left. .
- cursor jumps to 1line 18 and four lines giving the
keyboard commands are displayed.
- cursor is placed at the first character on the first
line of screen contents.
You may now freely move the cursor throughout the
screen using the commands given below, modifying and
entering new text as desired. The display always
shows the exact updated contents of the text block.

<ESC> Pushing the Escape key causes the editor to exit. The
cursor will Jjump to line 18, the screen is cleared
from line 18 to end, and the message 'OK' is

displayed. Be sure to wuse the command 'FLUSH' to
ensure that your edited text is written to the disk.

<RETURN> The Carriage Return key (New Line key on some
terminals) causes the cursor to jump from its current
position to the start of the next text 1line. The

FORTH Mini Screen Editor Va-1
(c) 1982 Laboratory Microsystems

J contents of the screen are unchanged.

o <Ctl/R> Control/R ("R) causes the cursor to move to the right
one position. If the cursor is at the end of a line,
it will be moved to the beginning of the next line.
. The contents of the screen are unchanged.

(<Ctl/L> Control/L ("L) causes the cursor to move to the 1left

one position. If the cursor 1is at the start of a
[line, it will be moved to the end of the previous
1 line. The contents of the screen are unchanged.

— <Ctl/D> Control/D (°D) moves the cursor down one line. If the
] cursor is already within the last text line, it will
be moved to the end of the line. The contents of the

screen are unchanged.

):k%. <Ctl/uU> Control/U (“U) moves the cursor up one line. 1If the
e cursor is already within the first text line, it will
— be moved to the left end of the line. The contents of
) the screen are unchanged.

<Ctl/E> Control/E ("E) sets the entire text area to blanks,
[and leaves the cursor at the beginning of the first
- line.
] The delete key backs up the cursor (same effect as
ctl/L).
_ <Ctl/1I> Control/I ("I) functions as a horizontal tab. For

each depression of this key, the cursor will jump to
- the right 8 spaces. If the cursor is already at the
end of a line, it will be moved to the beginning of
‘ : the next line.

FORTH Mini Screen Editor Va-2
(c) 1982 Laboratory Microsystems

|

M~

FORTH Full Screen Editor

The file EDITOR.SCR contains the source text for a powerful high level
FORTH screen based editor. This editor is compatible with FORTH
version 2.xx. The program is terminal dependent for the CLEARSCREEN
and GOTOXY functions in screen #8 of the source listing, which must be
modified appropriately for your CRT.

The capabilities of this screen editor include:

* full visual editing with up to date

screen contents displayed at all times

* independent command and edit modes

* single and multiple screen copy utilities

* screen file and disk directories

* character insert

* character delete

* word delete

* line insert

* line delete

* line erase ,

* separate "line stack" for temporary
storage of text

* screen erase

* forward and back tabbing to tab stops
or words, user may set tab stop width

* string search and replace

* cursor movement in any direction

* print menu of available control codes

* go to next screen or previous screen

*

while editing a screen, all changes
may be discarded at any time and
original contents of screen restored

FORTH Full Screen Editor Vb-1
(c) 1982 Laboratory Microsystems

i

i

|

-
B 3

1 43

T

—

Screen #8 of the full screen editor source text contains the functions
CLEARSCREEN and GOTOXY. When you receive the disk these are set up
for a Televideo 950 terminal. These functions are terminal dependent
and must be modified for your particular CRT model.

CLEARSCREEN Stack effect: @ -> @

Clears the terminal screen and
leaves the cursor in the home
position (upper left corner of
screen). On some models of CRT this
requires two separate escape
sequences. In addition, some
terminals require enough time to
complete this function that several
rubouts must be sent after the
escape sequence to prevent text
characters being transmitted before
the terminal is ready.

GOTOXY ‘Stack effect: 2 -> @

Calling sequence: x y GOTOXY
Leaves the cursor in the position on
the screen defined by the x (column)
and y (row) coordinate on the stack.
(x,y)=(0,0) is assumed to be the
upper left corner of the screen. X
must be in the range 6-79, y in the
range @-23.

The file FORTHLE.COM on the disk is FORTH with a built-in fig-FORTH
line editor. Use this editor to modify the terminal dependent
functions in screen #8 for your terminal. Detailed instructions for
the 1line editor are in the FORTH user's manual. Of course, you
would initiate this process by typing:
FORTHLE EDITOR.SCR <return>

(after system ID and "OK", type:)

EDITOR <return> (selects the editor vocabulary)

proceed using the "P" function of the line editor to

modify the CLEARSCREEN and GOTOXY definitions. Be

sure to type FLUSH and BYE when finished to force
your changes out to the disk file.

After modifying the terminal dependent functions appropriately, you
can create a customized screen editor by typing:

FoRTH EDITOR.SCR <returnd>

I LeAD

FORTH Full Screen Editor Vb-2
(c) 1982 Laboratory Microsystems

:

——

Wait... loading screen editor
.LINE isn't unique

Screen editor compilation completed.
1%377 bytes left in dictionary.
obh:

SAVE EDITOR

You can now transfer the file EDITOR onto all of your FORTH
working disks. You will have no further need for the files FORTHLE,
EDITBASE, and EDITOR.SCR unless you change to a different type of CRT

terminal or you wish to make basic changes in the operation of the
screen editor program.

If the compilation process aborts, you may have made an error in
editing the terminal dependent screen. The most common error made by

the new user 1is the omission of either a semicolon ";" or a forward
arrow "-->",

Using the screen editor:

First you must invoke the EDITOR load module, specifying the target
screen file name in the command line. 1If no screen file is specified,
it will default to the file FORTH.SCR. Example: '

EDITOR FLOAT.SCR <return)>

After the Editor locates and opens the screen file, it enters command
mode and waits for input from the keyboard. 1In either command mode or
edit mode, you can type control/V ("V) at any time to display the list
of available command or control keys.

Control codes for the edit mode are defined by constants 'in screens
#30-32 of the source code listing. The user can change these at will
to make them more convenient for his terminal. The function code menu
automatically references the constants for its display so in most
cases the menu module program code will not need to be modified. The

list below gives the command codes as they are defined in this source
listing.

FORTH Full Screen Editor Vb-3
(c) 1982 Laboratory Microsystems

Command Mode Control Codes

(o Copy a single screen of text within the file. The
- user is prompted for the source and destination screen
1} number.

D Display directory for selected disk drive.
|
. E Begin editing. The user is prompted for the number of

the first screen to be edited.

Display index to current screen file.

—

R

M Move a set of screens within the current file. The
user is prompted for the number of the first source
screen, the last source screen, and the first
destination screen. Depending on the direction of
transfer, the routine begins at the appropriate end of
the screen range so that when screen numbers overlap
no data will be destroyed.

i

T Set width of tab stops.

(-
(e

Change screen files. All updated buffers are written
to the disk. The wuser 1is prompted for the drive
assignment and the name of the new screen file. 1If
the new file cannot be located, the previous screen
file is reopened.

——
|
| S—

Leave the screen editor, enter normal FORTH
interpretive move. This can be used to compile and
test program text that is being edited.

e

>

ESC Write all updated buffers td'disk, close the screen
file, and return control to MDEKEX

i
[

When a screen number is requested in command mode, you must enter a
decimal number (any number of digits) followed by a carriage return.
You may use the usual FORTH backspace code to delete incorrect digits.

|

FORTH Full Screen Editor Vb-4
(c) 1982 Laboratory Microsystems

Edit Mode Control Codes

[~
RS
.

[cursor commands]

“L Move cursor 1left. 1If cursor is already at beginning
of a line, move it to the end of the previous line.
Contents of screen are unchanged.

—J

{? “R Move cursor right. If cursor is already at the end of
L a line, move it to the start of the next line.
Contents of screen are unchanged.

M
L “u Move cursor up. If cursor is already in the top 1line

of the screen, move it to the left margin. Contents
of screen are unchanged.

“D Move cuksor down. If cursor is already in the bottom
line of the screen, move it to the right margin.
} ' Contents of screen are unchanged.

“H Move cursor to home position (upper 1left corner of

(} editing area). Contents of screen are unchanged.

- CR Move cursor to beginning of next line. If cursor is
already in the last line, move it to the right margin.

L] “1 Move cursor right to next tab position. If cursor is
already in the last tab position of the current line,

g move it to the beginning of the next line. Contents

| of screen are unchanged.

r “0 Move cursor left to next tab position. If cursor is

[J already at the left margin, move it to the 1last tab

‘ position of the previous line. Contents of screen are

s unchanged. '

{ 1

'h

[word commands]

;J °F Move cursor forward (right) to beginning of next word.

{ “B Move cursor back (left) to beginning of previous word.

LJ e Delete the word to the right of the cursor. Discard
any trailing spaces and bring the next word and the

" remainder of the line up to the cursor. :

i

- [l1ine commands]

,)J

‘ X Erase current line (the line containing the cursor).

BORTH Full Screen Editor Vb-5
(c) 1982 Laboratory Microsystems

“K Delete current line (the line containing the cursor),
moving all subsequent text lines up one position and

(] making line 15 blank.

B °s Insert a blank 1line at the cursor, moving all lines

7} down, contents of previous line 15 are lost.

|

‘ 'Y Copy current 1line (i.e. the 1line containing the
cursor) to separate holding area. Once Y has been

T} used, the contents of the extra 1line buffer are

| displayed at the bottom of the screen between a pair
of braces: { }. The contents of the screen are

f} unchanged.

|

o T Get contents of extra line buffer to current line (the

— line containing the cursor). The contents of the

\'E extra line buffer are unchanged, the previous contents

-z of the current line are lost.

i

;] [character commands]

- °G Delete the character under the cursor, moving the rest

\] of the line left. Other lines are not affected.

L

DEL Delete the character to the left of the cursor, moving

r - the cursor and the remainder of the line to the left.

g Other lines are not affected.

(“a Insert a space at the cursor, moving the rest of the

[fI current line to the right. Characters shifted off the

= , right end of the line are lost. Other lines are not

- affected.

% “Q Enter insert mode. All subsequent characters are

inserted at the current cursor position and the rest
f of the line is moved to the right. Characters shifted
{ ! off the right end of the line are lost. Insert mode
- terminates on a carriage return or any control code.

™

FORTH Full Screen Editor Vb-6
(c) 1982 Laboratory Microsystems

[screen commands])

a “E Erase entire screen and leave cursor in the upper left
corner of the screen.

\:' S

N Write current screen to disk and go to next screen.

Write current screen to disk and go to previous
screen. "

(7]
>
0

Force the current screen contents to be written to
disk, then return for further editing.

z)

Z Discard all changes and restore screen as it was
before any editing.

A

(miscellaneous commands]

S
—d

~

\ Display menu of control codes. Screen contents are
unchanged.

[—

ESC Leave edit mode, return to command mode.

T r— !

M
Lo

|

FORTH Full Screen Editor Vb-7
(c) 1982 Laboratory Microsystems

'

Disk File Interface

{J Source code for a disk file and record interface is found in screens
$23-30 of the distribution file FORTH.SCR . This set of extensions is
provided to give theQd°© FORTH user complete control over MDEX
standard disk files and access to any record within such files,
bypassing the FORTH internal disk drivers and virtual memory
management. The functions are compatible on the high level with the
disk file interface provided with Laboratory Microsystems PC/FORTH and
8086 FORTH packages. The operations have minimal error and syntax
checking and must be used with caution; they are not recommended for
use by beginners in FORTH.

As each file control block 1is defined, it is allocated a special
{} control byte and a dedicated disk buffer. When record operations are
}

49

performed referencing a given file control block, the buffer address

is automatically passed to and provided back to the user if the

operation 1is successful. The number of file control blocks which may

f% be defined (and consequently the maximum number of files which may be

L open at any one time) 1is limited only by the amount of dictionary
space available.

A v\
R

1} Complete descriptions of each file and record operation are provided

' below in the same format used for the manual's Glossary section. The

, status-code returned by all file operations is in the range @-3 1if

] operation successful, and 255 if operation failed. The status-code

L returned by all record operations is either the disk buffer address if
operation successful, or zero if operation failed.

?BUFFER-ADDR fcb-address --- disk-buffer-address
r Given the address of a file-control-block, return the address
[} of its dedicated disk transfer area.

s CLOSE~FILE fcb-address --- status-code
L Close am MOc\ disk file, wupdating -the disk directory if
I necessary. Release the file control block.

Delete the MOEX disk file named in the file control block from

f} DELETE-FILE fcb-address --- status-code
the disk directory.

J

FCB -—-
(Used in the form:

FCB fcb-name
Allocate and initialize a file control block and disk buffer.
Subsequent execution of the control-block name will leave the
address of the file control block on top of the stack {(see
examples).

]

File and Record Interface VI-1
(c) 1982 Laboratory Microsystems

FILENAME fcb-address ---

Used in the form:
‘L ' (fcb-address placed on stack) FILENAME file-spec
- Format a file specification of the form unit:filename.ext into
the indicated file control block. 1If the drive assignment is
not included, the default drive will be .used. If the
extension is not specified it is set to all blanks.

. INPUT-FILENAME fcb-address ---

\2 Queries the console operator for input of a drive name, file

L name, and extension identifying a specific MDEX" disk file.
Formats the supplied information into the indicated file

T} control block. '

|

-
t] OPEN-FILE fcb-address --- status-code
Find and make available the file named in the indicated file
control block for further record operations. The filename

[. .
LJ must have been previously formatted into the control block
using FILENAME or INPUT-FILENAME. .

PARSE-FILENM fcb-address file-spec-address ~---
Parse a file specification of the form unit:filename.ext into
the indicated file control block. Initialize all reserved
areas. If a drive specification 1is not included, the
"current" drive will be used.

- \

[

|
<
)

. READ-RANDOM fcb-address record-number -~- status-code
LJ Read the designated record from the disk into memory,
(returning either the memory address of the record or zero if

the record does not exist.

—

READ-SEQ fcb-address --- status-code
Read the next sequential record in the file into memory,
returning either the memory address of the record, or zero if
end of file has been reached.

|G

‘ —
— —

File and Record Interface VI-2
(c) 1982 Laboratory Microsystems

|

— T)

i WRITE-RANDOM fcb-address record-number --- status-code
1}§ Write the designated record from memory to the disk, returning
L}ﬁ the memory address of the record if operation successful, or

zero if no room left on the disk.

[] WRITE-SEQ fcb-address --- status-code

Write the sequential record from memory to the disk, returning
the memory address of the record if operation successful, or
zero if no room left on the disk.

| —

A simple example using the interface functions. Open a file named
USER.TMP, read record zero into memory, then print word zero of the
record on the terminal.

—
|

-FCB FILEl : (establish file control block)
. FILEl FILENAME USER.TMP (place filename in block)
: DEMO FILE1l OPEN-FILE

L

255 = IF ." File not found " ABORT

THEN FILEl ¢ READ-RANDOM

DUP @= IF ." Record does not exist " ABORT
THEN @ . '

FILEl CLOSE-FILE ;

[
—

~

[T

i

File and Record Interface VI-3
(c) 1982 Laboratory Microsystems

|

r
L

]
]

L

)

[[
| S—

i ! |

!

]

|
|
3
|

™
Y

—

FENCE

FILL

FIRST

FLD

FLUSH

FORGET

FORTH

HERE
HEX

HLD

"return" or the count of characters has been received. One or
more nulls are added at the end of the text.

--- addr U
A user variable containing an address below which FORGETting
is trapped. To forget below this point the wuser must alter
the contents of FENCE.

addr quan b ---
Fill memory at the address with the specified quantity of
bytes b.

--- n

A constant that leaves the address of the first (lowest) block
buffer. :

--~ addr u
A user variable for control of number output field width.

Write all updated disk buffers to the disk. Should be used
after editing, before dismounting a disk, or before exiting
FORTH.)

Executed in the form:

FORGET cccc .
Deletes definition named cccc from the dictionmary with all
entries physically following it. In 9960 FORTH and fig-FORTH,
an error message will occur if the CURRENT and CONTEXT
vocabularies are not currently the same.

P
The name of the primary vocabulary. Execution makes FORTH the
CONTEXT vocabulary. Until additional user vocabularies are
defined, new user definitions become a part of FORTH. FORTH
is immediate, so it will execute during the creation of a
colon definition, to select this vocabulary at compile-time.

--- addr
Leave the address of the next available dictionary location.

Set the numeric conversion base to sixteen (hexadecimal).

--— addr

~ . S 1. 1 A3 - s . (R -7 F T o
A user var!-snle that holds the address ¢f the latest character

"FORTH Glossary XII-16
(c) 1982 Laboratory Microsystems

SCR --- addr U

A user variable containing the screen number most recently
referenced by LIST.

SCREEN-FCB -== addr Z

Leave the address of the standard file control block used
by FORTH to manipulate the screen file.

f SEC/BLK === n

| Constant giving the number of physical disk sectors per FORTH
) standard 1024 byte block.

j] SIGN n d --- 4
e Stores an ASCII "-" sign Jjust before a converted numeric
output string in the text output buffer when n is negative. n

is discarded, but double number d is maintained. Must be used
between <§ and #>.

| SMUDGE . |
y Used during word definition to toggle the "smudge bit" in a
- definition's name field. This prevents an uncompleted
- definition from being found during dictionary searches, until
*(compiling is completed without an error.
Sp@ --- addr ,
A computer dependent procedure to return the address of the
stack position to the top of the stack, as it was before SP@
was executed. E. g. 1 2 Sp@e @ . . . would type 2 2 1.
SP! '
A computer dependent procedure to initialize the stack pointer
register from S4@. '

SPACE
: Transmit an ASCIT blank to :the outputr dovice

V-
A RS SR G

FORTH Glossary XII-23
(c) 1982 Laboratory Microsystems

I
-

L

FORTH GRAPHICS EXTENSIONS

Rev 1.0

by RICHARD ROBERTS

May 1984

<q @Mlcropwcessot Engineering Ltd. May 1984

MicroProcess'O'r Engineering Ltd

21 Hanley Road Shirley
Southampton SO1 5AP
Tel: 0703 780084

)

MPE-FORTH graphics extensions Rev 1.0 May 1984
ZONTENTS

1. FORTH Graphics extension seesatscessscoscesaceresaasesnsnanaac 2

2., OGraphic modes. Features and video mMemoOry Map. .ccesseseocrsanccenn
Z2.1. Graphics 1 (Mode Q)ccceccenssnrasnnassansncsanaancaannannesnnsncs
2.2. ©Oraphics 2 (MOde 1) ...cccrverraccaneceanancrensassansanancanss
ZaZF. Multicolour (MOde 2) ...cee:ccesassncnssaassancssssaannssssananss

:.‘- - Text ("Dde 3) ®@ @ 2 ® # @ 8 8T 0 N NS CEFEC ST NS0 EESE 0 ET ST EEETEES TSNS A

T. GBraphics 2 Hi—reS, cccecccesccscosansasnnssnacanccasnnncansannncasrs
X.1. Plotting modesccceecavnccanncannsnsancsacsanasnanansannessns
Te2. POINtS ...ucceievvicsaasvracssansanuasnccasaennensansunsnasacscsncnsas
T.3. linear 1inNeS ..ccccecescvseanceracssaccnnsnnsanseansnascscesnncnse
JZ.4. Arcs and CirCleS .cc.ccccerenccncavecncsnscsasncscanosscnsscansnnnsssse
Z.9. Point movementcccresraccasancascasesnsasnnsasnesaransnnrnvs
T.6. Colour changes ..:ccccccccecccnessnansasssccnnsansasansncnscenscs
Z.7. Plotting examples ...cccecacescscsvcccnncsaccascasasassscancnnasses

4- SpritES " F S22 98 68T EWEErso .S eESsaEEsaERESSeatCEsSNEEsEE"SECceEwEsSeER

4!1. Sprite animatiﬂn ® ® A @ 8 &S 8 8 ¢ S S ST S S S E S8 ST S A8 aS S PSS NS S s a8 sAac eSS
4,2. Sprite examples ...cccccecccccrsccasacansecsasaccncnancssncancses

S. User Defined Characters .cccccscccccasccccscsacsnssacsassansanncscscscss

6. OGraphics gloSSary .cccececccacscccccacrancncasconcsascsanssansanacs
6.1. De‘initions # @ @ @ 2 &8 ¢ ¥ 9 & & P & S E S G S ¢ 6 S 8T " S AaS " S S EE e e e @SS v E S s e
6. 2. . constants ® @ &8 w8 ® ¥ @ 8 ¢ 80 & 5 08 T 80 08 S S " e S e s s e " e v a0 I " & ¢ ® ® 8 * & B ¥ B

6.3. variableg S ¥ @8 e s 2 E 8 e 8000 CES P IS 60 ESSERESENeESES0SETTeOeEEEEsS

A

A A B s =

[N I I N - R R

N NN

Q

10
10
15
16

1

—

5

s =

MPE~-FOFTH graphics extensions Rev 1.0 May 1984

Microprocessor Engineering Limited
21, Hanley Road, Shirlev, Southampton, SQ1 3SAP
0703-780084

MFE-FORTH graphics extensions

1. FORTH Braphics extension

The graphics extension on the 990C¢ FORTH running on the CORTEX allows
full use of the the 9928/29 graphics ability. The MDEX +Ffile GFORTH
contains a revised version of the 9900 FORTH which supports a full set
of gqgraphic commands, including 1line, arc and circle drawing words,
full sprite manipulation etc. Along with the graphics version of the
FORTH you will find the file GDEMO.SCR, which contains a demonstration
of most of the graphics commands available, (This can be run by typing
GFORTH GDEMO.SCR 7 load).

All graphics words exist in the vocabulary GRAPHICS. It will also be
noticed while using GFORTH that it is case insensitive, i.e. casa=CASE
ote.

2. Graphic modes. Features and video memory map.

2.1. Graphics 1 (Mode O)

in this mode the pattern plane is divided into 32%24 character
positions as follows:

MFE-FORTH graphics extensions Rev 1.0 May 1984

posj%ion O position 31
R | t &
’ !
: :
X L &
i :
H i
pasition 735 position 767

It is possible to bhave full use of sprites (q.v.) in this mode and
everv seventh character beginning a different cclour. The oanly
software supplied for use in this mode is G1COL this word sets all the
colours to the current text colowrs as it is assumed that the user
will use mode 1 (Graphics 2) because of it’s greater pcssible
resolution rather than mode ©. The FIORTH word GRAFH1 places th=

system irto this mode.

Memory map for Mode O

Q000 Sprite pattern generator table
0400 Name iable

o700 Colour table

¢780 Sprite name table

0800 Pattern generator table

2.2, Graphics 2 (Mode 1)

This mode is the high-res graphics mode allowing the user to have full
cont-ol over a 236%192 bit mapped screen. It is possible +o mix
graphics and text in this mode with the text baving a rescluti-n of
22x74 —haracters, the character positiors are the same as for mode C.

TR

|

-

)

MPE-FORTH graphics extensions Rev 1.0 May 1984

All future references to positions on the screen when in this mode are
referad to x and y, x being across y being down, with location 0 0 as
the top left hand corner.

Colour definition in this mode is any two colours per eight horizontal
pixels., The FORTH word GRAPH2 places the system in this mode.
Software is supplied to draw 1lines, circles, arcs, points, move
sprites, change colouwr of new points, move blocks of 8%8 characters
about the screen, etc.

Memory map for Mode 1

0000 Fattern generator table
1800 Pattern iname table

1BOO ASCII table lower

2000 Pattern colour table
3800 Sprite pattern table
ICO00 ASCII table upper

IF80 Sprite attribute table

2.3. Multicolour (Mode 2)

In this mode the screen 1is split into 64 blocks by 24 blocks,
providing an unrestricted colour display with sprites. The memory map
is the same as mode O and again no software is supplied for operation
in this mode as it assumed mode 1 will be used instead.

2.4. Text (Mode 3)

In text mode the screen is divided into 40 characters by 24 lines, two
colours only are displayed at any one time. One for the text colour
the second for the background. No sprites are available in this mode,
and the memory map is the same as that for mode 0. It is possible.to
have user—defined characters when in this mode.

oy

3. Graphtics 2 Hi-res,

As has been mentioned prior to this mode 1 (Graphics 2) has the
capacity to be a 236%192 bit-mapped graphic mode.

During the +following there will be references to "the current plot
position® this is simply the last point plotted. Note this will be 0 O
to start with.

MPE-FORTH graphics extensions Rev 1.0 May 1984

3.1. Plotting modes

In graphics 2 mode four plotting modes are available:
Pmode Effect

OVERFLOT In this plotting mode any point/line plotted will
always plot a point/line in the foreground colou.
TOGGLEFLOT When a line is onlotted in this mode any point wiil
" toggle the condition of the point currently in that
position.

DESTROY A line plotted in this mode will plot in the
background colour.
NULLPLOT This is the no action plotting mode i.e. any point

will not change when it is plotted.

A plotting mode is entered by the FORTKR words OVERPLOT, TOGGLEFLOT,
DESTROY and NULLPLOT. :

J.2. Points

Single points are plotted on the screen by using the word POINT, the
stack requirements for POINT are (x y ——)

e.g. 100 40 POINT
will plot a point‘at 100 across 40 down.
N.B. remember what plotting mode you are in.

3.3. linear lines

The are a number of ways to draw a line, as follows:-—

FORTH word Stack comment & Effect

PLOT-ARS (X1 y1 X2 y2 ——) Draw a line from x1 yl1 to x2 yZ2

PLOT-REL (dx dy ——) Draw a line from the last point
plotted cx cy to cx+dx cy+dy

PLOT-TO (%1 yl —) Draw a 1line from the last point

plotted to x1 yi1

Each word produces a line that is as linear as possible, note that if
you require to destroy a line it is often better to plot in the same
direction as you originally plotted it.

MPE—FORTH graphics extensions Rev 1.0 May 1984

F.4. arcs and circles

It is possible within the graphics vocabulary to plot circles and arcs
as follows:—

FCRTH word Stack comment % Effect

ARCX (start-x start-y centre-x centre-y endpoint-—x
cw/ccw ——=—) Draw an arc from start-x start-—y,
centred at centre-x centre-y, 1in a directicn

determined by cw/ccw, cw/ccw=0 produces a clockwise
arc else an anticlockwise arc. The position at
which the arc will stop is when the x value of the
arc crosses the endpoint-x line.

ARCY (start—x start-y centre-x centre-y endpoint-y
cw/ccw ———) This is the same as ARCX except that
the endpoint is determined by the arc crossing
endpoint-y line.

CIRCLE (»yr — } Draw a complete circle centre x
y radius r.

As with lirear lines it 1is advised to wunplot arcs in the same
direction as you plotted them.
X.9. Point movement
There exist two words which move the plot position without plotting a
line these are: :

MOVE-REL { dx dy ———) Move the plot position by dx dy

MOVE-TO (x y —) Move the plot position to x vy

3.6. Colour changes

There are a possible 16 colours displayed at anyone time on the
graphics two screen, with the maximum colour definition of two colours
per eight horizontal pixels.

Colours are changed by the following methods:-

nl n2 COLOUR Changes the foreground colour to n1 and the

background colour to n2
n1 BACKGROUND Changes the background colour to ni
n1l FOREGROUND Changes the foreground colour to ni.
____________ S

MPE-FORTH graphics extensions Rev 1.0 May 1984

Constants are provided for each caolour code'o..ls.

Code Colour constant
Q TRANSPARENT
1 BLACK .
2 MED-GREEN
3 LIGHT-GREEN
4 DARK-BLUE
S LIGHT-BLUE
6 DARK—RED
7 CYAN
8 MED-RED
Q LIGHT-RED
10 DARK-YELLOW
11 LIGHT-YELLOW
12 DARK—GREEN
13 MAGENTA
14 GRAY
15 WHITE

3.7. Plotting examples

Below is an example of how the above words can be used to produce a
coloured display.

GRAPHICS DEFINITIONS :
WHITE BLACK COLOUR Set background colour to black,

foreground to white

GRAPHZ Place system in mode 1 and
clearscreen ,
0 0 2355 O PLOT-ABS -Draw a 1line across the top of the
screen
-128 191 PLOT-REL Draw a line to the bottom centre of
, the screen :
Qo0 PLOT-TO Draw a 1line to the top left of the
screen i
128 93 95 CIRCLE Draw a circle in the centre of the
' screen

DARK—RED FOREGROUND

100 120 128 96 136 1 ARCX
100 120 128 86 156 1 ARCX
S BACKGROUND

148 40 135 CIRCLE
108 40 13 CIRCLE
128 96 15 CIRCLE

Change foreground colour to dark-red
Draw an arc

Draw a second arc

Change background colour to coclour
S5, (light-blue.)

Draw a circle

Draw a circle

Draw a circle

]
i

— C

MPE-FORTH graphics extensions Rev 1.0 May 1984

From the last three commands it becomes very noticeable about the laact
of colour definition.

4., Sprites

Sprites are graphics that can occupy space on the screen independently
and in addition to the characters which normally make up the screen.
Thirty two sprites are available on the highest priority video planes.
Sprites are only visible in graphic 1, graphic 2 and multicolour
modes.

4.1. Sprite animation

The following words allow animation of sprites in the above modes: —

1S-SPRITE (colour sprite-shapef x-—pos y-pos planef -—)
Places a new sprite on the screen at position x-pos
y—pos in colour ’colour’, the planef is reference
to the sprite priority, O being the highest X1
being the lowest.

MAG (nl ——) n1 = 0..3 n1 defines the size of all the
sprites on the screen as follows:

ni effect
(o] 8128 sprite
1 8%8 sprite mapped onto a 16%16 set of
pixels .
2 16%16 sprite
3 16%16 sprite mapped onto a 32%32 set of
pixels
RSPRITE (——) Resets all sprites from the screen.
SHAPE (n0..n7 spritef —-——) Defines a new sprite
pattern. :
SPRITE-POS (X y planef -——) Moves the-sprite on planef to

position x vy
4.2. Sprite examples

Relow follows an example of the use of sprites, it can also be found
on screen 18 of GDEMO.SCR

L

MFE-FORTH graphics extensions Rev 1.0 May 1984

5RAPHICS DEFINITIONS BINARY

SPRITE-S1

SFRITE-S52

SPRITE-S3

SPRITE-54

00011011
00010001
00010001
00010001
00010001
00010001
00010001
00010001

00001001
01101001
10010110
00010000
00010000
10010000
01100000
00000000

00000000
00000000

00000000

01000001
10100001
10010001
00010001
00010101

00000000
00000000
00000000
00000110
00001000
00001000

‘00001110

00001001

00 SHAPE

10 SHAPE

01 SHAPE

11 SHAPE

[-A‘

MPE-FORTH graphics extensions Rev 1.0 May 1964

DECIMAL

ON-SPRITES SPRITE-S1 SPRITE-S2
SPRITE-S3 SPRITE-S4
1 0 00 00 O IS-SFRITE
S 0 00 00 1 IS-SPRITE
? O 00 00 2 IS-SPRITE
13 0 00 00 3 IS-SFRITE 3

SDEMO GRAPH2 RSPRITE 3 MAG ON-SPRITES
5000 O DO
I I O SPRITE-POS
0O I 1 SPRITE-FPOS
601 + 1 2 SPRITE-POS
200 I 50 7/ 10 + I SPRITE-POS
LOOF

SDEMO

Note. No more that four sprites can appear in a row on the screen at
any one time, if this happens then the lower priority sprite(s) will
become invisible and the Fifth sprite flag in the status register will
be set to 17, this is cleared ONLY when the status register is read
or the system reset. The number of the fifth sprite is placed into the
lower five bits of the status register. The status register can be
read by VDP-STAT. Coincidence of sprites can be detected by reading
the Coincidence flag in the VDP-STAT register, the coincidence flag is
again only cleared by reading the VDP-STAT register or by a system
reset.

S. User Defined Characters

It is possible in TEXT mode (mode 3) to have up to 236 user-defined
characters, each character being a 628 block of pixels. Thus giving an
effective possible pixel definition of 240%192.

To define a character the word CHAR is used. CHAR is very similar to
SHAPE, except that the shapes defined are the normal ASCII character
set. For example

MPE-FORTH graphics extensions Rev 1.0 May 1984

BINARY
00000000
11111000
01001000
01111000
01000000
01000000
01000000
00000000

DECIMAL

98 CHAR

Will define the ’big’ lawer case ’b” into a rather poor proper lower
case b. Note that the last two bits of each number is a zero, as &
switch from text to graph2 mode will display any character as an Ex8
character block. CHAR should NOT be used in mode 1, as the character
set is split to allow for the graphics pattern and colour screen.

6. Graphics glossary

6.1. Definitions

ARCX (start-x start-y centre-x centre-y endpoint-u
cw/ccw ——) Draw an arc from start—-x start-v,
centre centre—-x centre-y, in a direction determined
by cw/ccw zero equals clockwise none zero equals
counter clockwise, until the arc crosses a line
determined by endpoint-x.

ARCY (start-x start-y centre-x centre-y endpoint-y
cw/ccw ——) This is the same as ARCX except that
the endpoint is determined in the Y plane.

BACKGROUND (back—ground-colour -——) Sets a new back—ground
colour (see colour)

_CHAR (N..n7 charf ——) Redefines the character shap=
when in TEXT mode (see shape)

CIRCLE (centre-x centre-y radius ———) Draws a circle in
the current colour.

10

]

r
|

~‘m
.
[‘

=
—

]

MFPE-FORTH graphics extensions Rev 1.0 May 1984

CLS

coL

COLGUR

Cos

DESTROY

FOREGROUND

GEMIT

GRAFH1

GRAPH2

GRAFPHICS-TEXT

GTYPE

(———) Clearscreen for any mode.

(¥ y ——— colour) Returns colour of pixel at the
point x y when in graph2 mode.

(text—colour back—ground—-colour —-) In text mode
sets <foreground and background colours. Text and
backgrournd colours wmust be in range O0..15. In
graph2 mode text-colour represents the colour that
a new pixel will be drawn in.

(N1 —— (cos—1)%xi000) Returns the cosine of
n1%1000

(———) Sets current plotting mode to destroy i.e.
any new pixel will be plotted as the background
colour.

(text—-colour ——) Sets new foreground colour (see
colour)

(n1 ——) GraphicZ version of emit, transmit ASCII

character to graphic screen.

{ ——) Changes mode to graphicl and clears screen.
In graphicl mode screen 1is 32 characters by 24
lines.

(———) Changes mode to graphic2 and clears screeﬁ.
In graphic?2 mode screen is 236 pixels by 192 pixels
with possible 32%24 characters.

(———) Sets output device as graphic2 video, and
CORTEX/FF95 keyboard. (See NORMAL-TEXT)

(address count —-) Graphic2 version of TYPE (see
GEMIT)

11

T

]

]

-

7 (1
—

MFPE-FORTH graphics extensions Rev 1.0 May 1984

IS-SFRITE

MAG

MOVE-REL

MOVE-TO

MULTI

NORMAL-TEXT

NULLPLOT

OVERPLOT

(colour sprite-shapef x-pos y-pos planef ———)
Places new sprite on screen at position u-pos
y-pos. Sprites are only visible in GRAPH1 GRAFH?Z
and MULTI modes.

(nl —)
nl = 0..3 n1 defines the size of the sprites
displayed on the screen as follows :-

nl effect

(o] 8%8 sprite

i 8%8 sprite mapped onto a 16%x16
set of pixels

2 16%16 sprite

3 16216 sprite mapped onto a

32%32 set of pixels

(dx dy —-) Moves current plot position by dx dy
without affecting the graphics screen.

({ X y ——) Moves plot position to x y without
affecting the current graphics screen (See
MOVE-REL)

(—) Sets graphics mode to MULTIcolour and
clears the screen, in Multicolour mode the possible
resolution is 64%x48 with no colour restrictions.

Set the 1i/0 device to a terminal (see
GRAPHICS-TEXT) .

(——) Changes the plotting mode tc no plot, in
this mode any 1line drawn will not change the
graphics screen in any way.

(———) Changes the plotting mode to over plot,
i.e. a line will always be drawn no matter what was
on the graphics screen prior to the line being
placed.

12

4

FLOT-ABS

PLOT-REL

PLOT-TO

FOINT

REG!

RESEED

RND

RSFRITE

MPE-FORTH graphics extensions Rev 1.0 May 1984

-

(x1 y1 x2 y2 —-) Draw a line from x1 yl1 toc x2 v
in the current foreground colour.

(dx dy ——) Draw a line from the current plot
position cx cy to cx+dx cy+dy

(%1 y1 —-——) Draw a line from the current plot
position to %1 y1

(X vy —=) Plots a single pixel at the point x vy
in the current foreground colour.

(n1 regf ———) Stores nl1 in VDP register regf

(nl ———) Resets the ’random’ number seed to ni

(n1 —- value) Produces a ’random’ number between
0 and nt-1

(—-—) Resets all sprites. i.g. all sprites will

disappear from the screen.

(cell —— data ;3 OR source—-cell dest-cell —-—)
Text mode :-—
cell = 0..959 Data returned will be the ascii

value of the shape currently at that position on
the screen.

Graphics2 mode :- .
source—cell = 0..767
dest—cell = 0..767 Transfers the contentes of the
source—cell to that of the dest—cell.

Graphicsl and Multicolour mode :—- In these modes
the message "Command Illegal in current mode" wil!
be displayed N.B. In multicolouwr mode unless you
are wusing a terminal you will not be able to read
this message and it will appear as a string o+

13

cCJ =

1

—

— L

. o ==

— e

e

—

o

MPE-FORTH graphics extensions Rev 1.0 May 1984
random colours.

SHAPE (n0..n7 spritef ——) Defines a sprite pattern in
the shape of n0..n7. Spritef is in the range 0..255
e.g. the following will define sprite shape number
0 as a space invader.

EINARY

10000001

01062010

00111100

¢1100110

10111101

01111110

00111100

00011000 0 SHAPE

SIN (nl —-— (sin—n1)%1000) Returns the sine of
Nn1%x1000
SPRITE-PQOS (x y planef ——) Moves the sprite on planef to

position x y (See IS-SPRITE)

SPUT (data cellf ———) Text mode :-
cell = 0..939 Places ascii character data on the
screen at position cellf

Graphics2 mode :- ‘

cell = 0..767 Flaces ascii character data on the
screen at position cellf N.B. in this mode eight
bytes go to make up a single character on the
screen. . G%

Graphicsl and Multicolour modes :- In these modes

the message “"Command Illegal in current mcde" (See

SGET)
TEXT (———) Sets graphic mode to text giving a
' resolution of 40x24 characters with user

redefinable characters, but only one text and one

MFE—FORTH graphics extensions Rev 1.0 May 1984
background colour.

TOGGLEPLOT (——) Changes plotting mode to toggle plot, that
1s if a point is plotted over another that point
will be turned off, and vice a versa.

V-FILL (v—address count data ———) Video RAM version of
FILL i.e. €ill the v-ram from v-address to
v—address+count with data.

I

V-MOVE { v—-source v—dest count ———) Video RAM version of
MOVE i.e. move contents of v-ram from v-source to
v-source+count to v-dest. Note that this operation
uses wmemory starting at HERE as a work space, and
does NOT check for avaiable space.

|
\
!
|

%ﬁ:}

VDP-STAT (—— value) Returns the status of the VDF. This
contains the interrupt pending flag, the sprite
coincidence flag, the fifth sprite flag. The format
is as below.

\

H—— -
N s

- BIT MSB ' LSB

(j MEANING i1 Fi1 38 C Fifth Sprite Number

{J VRAM! (data v—-address ———) Video version of C!
VRAMI . (v—address —— data) Video version of C?

.

6.2. Constants

'%7 The below are used in conjunction with COLOUR- and IS-SPRITE for
- setting new colours i.e DARK-RED CYAN COLOUR sets the foreground
colaur to dark-red and the background colour to cyan. .

TRANSPARENT (— 0
- BLACK (—— 1)
LJ MED-GREEN (— 2
L IGHT-GREEN (—— 3)
- DARK—BLUE (— 4)
\ L IGHT-BLUE (~— S5)

19

MPE-FORTH graphics extensions Rev 1.0 May 1984

DARK—-RED
CYaN

MEL-RED
i-T1GHT -RED
DARK-YELLQW
LIGHT-YELLOW
NARK-GREEN
MAGENTA

GRAY

WHITE

6.3. Variahles

CURCOLCUR

EDOM

Pl e e e e e e e e e

|

|

+ I
mTMESCOMD OB <O
~ N N e P S N e o

The value held in the upper nibble of this variable
contains the current text colour, and in the lower
nibble is the background coclour.

Contains the current value of the current mode as
folliows:

0 Graphicsl mode

1 Graphics2 mode

2 Multicolour mode

3 Text mode

16

